Del núcleo de los átomos a la computación cuántica

Compartir

Una investigación de la Universidad de Huelva ha permitido revelar nuevos datos sobre las formas de los núcleos atómicos, con los que se facilitará el desarrollo de la computación cuántica, que está llamada a revolucionar el mundo de la informática, con sistemas mucho más potentes.

Del conjunto de las investigaciones que se desarrollan en la Universidad de Huelva, seguramente la que encabezan, como investigadores principales, José Enrique García Ramos y Miguel Carvajal Zaera, figura entre las más teóricas, tratando de desentrañar la estructura del núcleo de los átomos y, por otro lado, profundizar en el conocimiento del mundo cuántico.

Ambos investigadores del Área de Física Aplicada del Departamento de Ciencias Integradas (Facultad de Ciencias Experimentales), están al frente del proyecto ‘Coexistencia de forma en el núcleo atómico’, en el que participan tres investigadores de la Universidad de Huelva y otros tres de la Universidad de Sevilla. Se trata de un proyecto financiado a través de las convocatorias competitivas del Plan Estatal de Investigación del Ministerio de Ciencia e Innovación.

En qué consiste este proyecto sobre el núcleo de los átomos

José Enrique García, que además es el investigador coordinador del proyecto, explica que ‘Coexistencia de forma en el núcleo atómico’ es un proyecto que va “mucho más allá de lo que su propio nombre indica”. La primera rama de esta investigación, indica García Ramos, es la que motiva el nombre del proyecto, “busca comprender ciertos aspectos de la estructura que tiene el núcleo atómico, y estudiar cómo ese núcleo atómico puede tener simultáneamente varias formas”.

La forma de alcanzar esas conclusiones se logra “haciendo colisionar ciertos núcleos contra el núcleo que quieres estudiar, y con la ayuda de detectores especiales podemos conocer los fragmentos que se han ‘roto’, las energías o la carga que llevaban”, señala el físico, que añade que “otras veces, lo que hace el núcleo es situarse en un estado de energía más alto del que tenía, y el núcleo no es capaz de mantenerse en ese estado mucho tiempo, y lo que emite a continuación es luz, pero no una luz visible, sino una luz de muy alta energía, los rayos gamma, que también podemos ver con detectores”.

El investigador resalta que “las características de esa radiación que emite el núcleo nos proporciona una valiosa información de la forma que tiene, e incluso de lo que puede hacer, por ejemplo, que vibre, que rote…”. Se trata de una vertiente de estudio muy actual, y, como precisa José Enrique García Ramos, “actualmente, en los laboratorios de Física Nuclear, aunque existan unos 117 elementos, se han llegado a sintetizar en torno a 3.000 núcleos diferentes, y se calcula que deberían existir otros 3.000 más”.

Moléculas e isomerización

De esta rama que investiga la coexistencia de forma en el núcleo atómico se encarga el propio García Ramos, y el proyecto se trifurca en líneas de estudio, todas ellas complementarias entre sí. Así, la investigación que lleva Miguel Carvajal trasciende del estudio nuclear, para centrarse en las moléculas, y más concretamente en las llamadas transiciones de fase cuánticas. Como explica Carvajal, en el objeto de estudio se encuentran los “cambios que experimentan las moléculas cuando han sido excitadas mediante la aplicación de energía (por ejemplo, luz infrarroja)”, y a través de “herramientas matemáticas, hemos podido observar diferentes cambios de fase, de comportamiento, en las moléculas”. Esta excitación, por ejemplo, hace que una molécula flexionada pase a ser una molécula lineal.

Carvajal, que también está inmerso en otros proyectos de investigación molecular como en el programa europeo ATMOS –donde es investigador principal en la Universidad de Huelva–, también trata de profundizar en la naturaleza de las moléculas a nivel atmosférico, trabajando con gases, así como a nivel astrofísico, orientado al estudio molecular en el medio interestelar.

Como destaca el coinvestigador principal del proyecto, la línea de investigación desarrollada sobre las transiciones de fase cuánticas es “muy interesante porque nos puede ayudar a estudiar la isomerización, es decir, aquellas moléculas que, conteniendo los mismos átomos, cambian completamente su estructura”. Tal es el caso del HCN y su isómero HNC, un cambio de estado en el que el átomo de hidrógeno pasa de estar ligado al nitrógeno a ligarse al carbono.

Cómo contribuyen al desarrollo de la computación cuántica

De este modo, el proyecto ‘Coexistencia de forma en el núcleo atómico’ toma estas dos vías, la propiamente nuclear, por un lado, y las transiciones de fase cuánticas, pero también apunta a una tercera rama, seguramente la que tiene una importante aplicación práctica más directa, concretamente en el campo de la computación cuántica. “Si bien no estudiamos esa línea específicamente, siendo un trabajo puramente de mecánica cuántica, sí que lo hacemos sobre sistemas con los cuales funciona la computación cuántica, trabajando con iones atrapados, circuitos superconductores, etcétera”, indica José Enrique García Ramos.

La investigación sobre computación cuántica es una línea incipiente, y recientemente el grupo liderado por García Ramos y Carvajal han logrado su primera publicación, que ha versado sobre “tomar un modelo de física nuclear, para movernos al ámbito de la computación cuántica; hemos conseguido trasladar una imagen que procesamos en un ordenador clásico, a un ordenador cuántico, con lo que hemos analizado el tipo de información que se puede extraer de ahí”.

García Ramos destaca que “estamos satisfechos con el trabajo realizado, con una parte de estructura nuclear que tiene bastante desarrollo –en los dos años de duración del proyecto se han publicado 21 artículos en revistas internacionales y se han llevado a cabo unas 5 presentaciones en congresos internacionales–, y con mucho trabajo por delante, y también por esa nueva vía que hemos iniciado en la mecánica cuántica”.